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Neuronal networks interact via spike trains. How the spike trains are transformed by neuronal networks is
critical for understanding the underlying mechanism of information processing in the nervous system. Both the
rate and synchrony of the spikes can affect the transmission, while the relationship between them has not been
fully understood. Here we investigate the mapping between input and output spike trains of a neuronal network
in terms of firing rate and synchrony. With large enough input rate, the working mode of the neurons is
gradually changed from temporal integrators into coincidence detectors when the synchrony degree of input
spike trains increases. Since the membrane potentials of the neurons can be depolarized to near the firing
threshold by uncorrelated input spikes, small input synchrony can cause great output synchrony. On the other
hand, the synchrony in the output may be reduced when the input rate is too small. The case of the feedforward
network can be regarded as iterative process of such an input-output relationship. The activity in deep layers of
the feedforward network is in an all-or-none manner depending on the input rate and synchrony.
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I. INTRODUCTION

Two key measures in neuroscience are the firing rate and
synchrony between activities of different neurons, which are
widely believed to play central roles in information encoding
�1�. The two measures are not independent of each other. It
has been demonstrated that the correlation between spike
trains increases with the firing rate �2,3�. Several recent stud-
ies have shown that synchrony can ensure the transmission
of temporally precise signals between neuronal networks �4�
and bind different features of the same object �5�. To dis-
charge spikes, neurons need to integrate thousands of presyn-
aptic spikes. At the single neuron level, synchronous input
results in a linear input-output relationship �6�.

In the nervous system, information is processed by one
functional group and then transferred to the next groups. The
multilayer feedforward network is quite suitable to model
such a process including many stages. In such a topological
structure, packets of synchronous activities either die out or
propagate stably with millisecond precision depending on the
initial condition �7�. It has been shown that the noise back-
ground has beneficial effects on signal transmission through
the feedforward network �8�. When the input to layer 1 is
only independent noise, synchrony can develop gradually
and the firing rate �the average number of spikes in a long
time� can be propagated �9,10�. With noise injected to each
layer, the neurons in deep layers can fire more regularly than
those in shallow layers �11�. Correlated firings have been
widely observed in experiments �12�, which have been
linked to attention �13�, stimulus discrimination �14�, and so
on.

So far, the existing works point to nontrivial interplay
between the firing rate and synchrony in neuronal systems.
In uncoupled neurons with correlated noise input, the syn-

chrony in the output spike trains depends on the firing rate
�2�. On the other hand, in the feedforward network, totally
uncorrelated input can induce synchronized spiking in deeper
layers �10�. It is of interest to explore systematically how the
transmission of spike trains through the feedforward network
depends on both the firing rate and synchrony. Another inter-
esting issue is to investigate whether there exists not fully
synchronized state in deep layers different from previous ob-
servations �10�.

Therefore, here we focus on two issues. The first one is to
explore the 2D space �firing rate and synchrony� mapping
between input and output spike trains of a network without
lateral connections. Another one is to investigate how the
activity in deep layers is determined by the input parameter
of layer 1.

In this paper we generate correlated spike trains by inject-
ing spatially correlated noise to neurons. These correlated
firings are then projected to a network which consists of
unconnected neurons. We found that when the firing rate and
projection strength are large enough, the output of the net-
work exhibits significant correlation even if the input spike
trains are weakly correlated, since uncorrelated firings depo-
larize the membrane potentials of the neurons to near the
threshold. With fixed values of input rate and synchrony, the
output synchrony increases sharply and then saturates at a
large value as the projection strength increases. On the other
hand, when the input rate or projection strength is too small,
the synchrony in the output can be reduced compared to that
from the input. The feedforward network can be regarded as
iterations of such a mapping. As a result of the interplay
between firing rate and synchrony, the activity of deep layers
is in silence or in full synchrony determined by the param-
eter values.

II. MODEL

In order to generate correlated spike trains, a spatially
correlated noise �i�t�=�1−c�i�t�+�c��t� �15� is injected*cszhou@hkbu.edu.hk
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into 2000 integrate-and-fire �IF� neurons �16�. �i�t� and ��t�
are all Gaussian white noise; the correlation coefficient c
�0�c�1� sets the relative weight of the common noise.
�1−c�i�t� represents the independent noise while �c��t� is
the shared noise. There exists no recurrent connection be-
tween these neurons. The dynamics of these neurons is de-
scribed by the following equation:

�m
dVi

dt
= Vrest − Vi + I0 + �i�t� . �1�

Here �m is the membrane time constant, Vi is the membrane
potential of the ith neuron, Vrest is the resting membrane
potential, and I0 is the external constant input. When the
membrane potential Vi reaches threshold value Vth, a spike is
generated and the membrane potential is reset to the resting
potential at which it remains clamped for a 5 ms refractory
period. Here �m=20 ms, Vrest=−60 mV, I0=9, and Vth=
−50 mV. For each neuron i,

��i�t1��i�t2�� = 2D��t1 − t2� , �2�

while for a pair of neurons i and j,

��i�t1�� j�t2�� = 2Dc��t1 − t2� . �3�

Here D is the noise intensity. As a result, the averaged firing
rate R can almost keep constant with fixed value of the noise
intensity D as the input correlation coefficient c changes.
That is, the averaged firing rate R can be solely controlled by
the value of the noise intensity D.

These correlated spike trains are then projected to a net-
work which consists of 100 IF neurons without recurrent
connections. Each neuron in the network randomly receives
synaptic inputs from about 100, i.e., 5%, neurons in the
group which is used to generate correlated spike trains. The
dynamics of this network is described by the following equa-
tion:

�m
dVj

dt
= Vrest − Vj + Ij

syn. �4�

Here Ij
syn is the synaptic current of the jth neuron caused by

those input spike trains. The synaptic current Ij
syn takes the

form

Ij
syn = g�

i
�

k

��t − ti
k� , �5�

where the sum over i corresponds to a sum on all synapses of
the jth neuron and the sum over k corresponds to a sum over
spikes arriving at a given synapse. g is the coupling strength.

The population activity of a network is defined as how
many percent of all the neurons in the network fire spikes in
a moving time window. Here we call it spike time histogram
�STH� p�t� �17�. To quantify the synchronization between
neurons, we compute the correlation coefficient between the
spike trains of a pair of neurons �2�. A long time interval T
=40 s is divided into small bins of �=40 ms and the two

spike trains are given by the number of spikes in each time
bin, n1 and n2. The correlation coefficient is then defined as

S =
�n1n2� − �n1��n2�

���n1
2� − �n1�2���n2

2� − �n2�2�
. �6�

S is in the range from 0 to 1. For independent spike trains,
S=0. If the spike trains are fully synchronized, S=1. The
synchrony degree S of the whole network is obtained by
averaging over all pairs of the neurons in the network. The
spike trains are characterized by the averaged firing rate R
and the synchrony degree S, Rin and Sin for the input spike
trains, and Rout and Sout for the output spike trains. The sce-
nario is outlined schematically in Fig. 1�a�. Since the bin size
used to compute the input synchrony Sin is the same as that
used to compute the output synchrony Sout, the reported re-
sults do not depend on the length of the time bin qualita-
tively. Figure 1�b� shows the input synchrony Sin versus the
correlation coefficient c with Rin=22. The input synchrony
Sin depends on both the input rate Rin and the correlation
coefficient c. It was found that the correlation between neural
spike trains increases with the firing rate as the value of c is
fixed �see Fig. 1�c��, which arises from the nonlinearities in
the transfer function of the neurons �2�. Whether the neurons
fire regularly or highly irregularly is critical for activity
transmission between neuronal networks. To quantify the in-
terval variability of the output spike trains, we define the
coefficient of variation �Cv� as the ratio of the standard de-
viation to the mean of the spike interval. If the output firing

FIG. 1. �a� Schematic illustrating how the input spike trains are
transformed by neuronal networks. �b� The input synchrony Sin ver-
sus the correlation coefficient c with Rin=22. �c� The input syn-
chrony Sin versus the input rate Rin with c=0.1.
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rate Rout is much smaller, the value of Cv cannot reliably
characterize the variability of the output spike trains because
of the limited operating time. In this paper, for Rout�1, we
do not compute the value of Cv. The Cv for the whole net-
work is the average value across all neurons. An average
over 50 different noise realizations is taken to obtain re-
ported results.

From the viewpoint of nonlinear dynamics, the two-
layered network in Fig. 1�a� can be regarded as a nonlinear
mapping that maps the firing rate and synchrony �Rin ,Sin� in
the input layer to �Rout ,Sout� in the output layer. In the fol-
lowing we will carry out various numerical experiments to
study this mapping, which is expected to depend on the pro-
jection strength g.

III. RESULTS

Let us first consider a situation that the input firing rate
Rin and the projection strength g are large enough. Figure
2�a� shows the STH of the input spike trains with Rin=31,
c=0.1, and g=60. It can be clearly seen that the fluctuation
of the input STH is small since the common noise is only
10% of the whole noise input. The value of the input syn-
chrony Sin is only 0.063. Figures 1�b�–1�d� show the corre-

sponding raster plots of the output spike trains, the output
STH, and the time series of the membrane potential of one
randomly selected output neuron. Obviously, there exists
greater synchrony in the output spike trains �Sout=0.48�. The
underlying mechanism is interpreted as follows. There are
many small peaks in the input STH, which arises from the
common noise �see Fig. 2�a��. By contrast, the flat part is
caused by the uncorrelated noise. These uncorrelated input
spikes can depolarize the membrane potentials of the
postsynaptic neurons to near the firing threshold �compare
Figs. 2�a� and 2�d��. As a result, when those correlated spikes
arrive, the postsynaptic neurons can be easily excited to fire.
The frequency with which the peaks in the input STH appear
is proportional to the input rate Rin. Since the input rate Rin is
large �Rin=31�, the peaks in the input STH occur very fre-
quently, meaning that the period that the neurons stay near
the threshold is short. Therefore, the probability that the neu-
rons are depolarized to cross the threshold only by these
uncorrelated input spikes is small. Adding up all these fac-
tors, the postsynaptic neurons are excited by correlated input
spikes with rather large probability and depolarized to fire by
uncorrelated input firings with small probability. That is,
there exists greater synchrony in the output spike trains. We
call such an effect “synchrony amplification effect.” Since
the membrane potentials of the neurons are required to be
depolarized to near the firing threshold by independent input
spikes in such an effect, the value of the coupling strength g
needs to be large enough. After the neurons fire spikes with
great correlation �see the arrow in Fig. 2�c��, the membrane
potentials of the neurons are reset to the resting potential and
kept at this level during the refractory period �see Fig. 2�d��.
Then they begin to integrate their input spikes to generate the
next spike. The time that these neurons need to integrate and
pass the threshold is almost the same because the number of
the input connections of each neuron is roughly equal. There-
fore, there still exists a peak at about 6350 ms in the output
STH �see Fig. 2�c��. Since the neurons need a period of time
to integrate input spikes to pass the threshold, there are al-
most no firings in the process of integration. Due to the fluc-
tuation of the number of the input connection, there exists
some difference between the averaged output firing rate of
each neuron. With the number of the input connections in-
creasing, the averaged output firing rate of the neurons in-
creases and the coefficient of variation Cv of each neuron
decreases �see Fig. 2�e��, which arises from the fact that the
neurons with more input connections need less time to inte-
grate and fire more regularly. There is a peak in the power
spectrum of the output STH located at about 50 Hz �see Fig.
2�f��, meaning that on average the neurons need about 20 ms
to integrate and pass the threshold.

The firing rate Rout, the synchrony degree Sout, and the
coefficient of variation Cv of the output spike trains versus
the input synchrony Sin for different values of the input firing
rate Rin are plotted in Figs. 3�a�–3�c�, respectively, with g
=60. Whether the output rate Rout increases or decreases with
the input synchrony Sin depends on the input rate Rin �see
Fig. 3�a��, which arises from the transition of the working
mode of the neurons. This shows that there is nontrivial in-
terplay between firing rate and synchrony. For Sin=0, the
neurons work as temporal integrators �18� and generate

FIG. 2. Rin=31, c=0.1, Sin=0.063, and g=60. �a� The input
STH pin�t� versus time. �b� Spike raster plots of the output spike
trains. �c� The output STH pout�t� versus time. �d� The membrane
potential Vi of one selected output neuron versus time. �e� The
coefficient of variation Cv of each neuron versus its firing rate. �f�
The power spectrum of pout�t�.
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spikes entirely by integrating input spikes. By contrast, for
Sin=1, the neurons act as coincidence detectors �18� and the
neuronal activities are fully dominated by the synchronized
input meaning Rin=Rout and Sout=1. As the input synchrony
Sin increases from 0 to 1, the working mode of the neurons is
gradually changed from temporal integrators to coincidence
detectors. As discussed above, due to the synchrony amplifi-
cation effect, the output synchrony Sout increases quite rap-
idly as the input synchrony Sin increases from 0 to 0.1. Such
a rapid transition holds true for different input firing rate Rin
�see Fig. 3�b��. With the input synchrony Sin increasing from
0.1 to 1, the output synchrony Sout increases slowly. For in-
termediate values of the input synchrony Sin, these unsyn-
chronous input spikes depolarize gradually the membrane
potentials of the postsynaptic neurons while those synchro-
nous packets make the membrane potentials of the postsyn-
aptic neurons increase sharply. The probability that the neu-
rons follow those synchronous packets to fire spikes
increases with the input synchrony Sin. For large input firing
rates without correlation �Rin=22 or 31�, the mean value of
the input current far exceeds the firing threshold. As a result,
the neurons fire regularly and the value of Cv is much small
�see Fig. 3�c��. Differently, for small input firing rates with-
out correlation �Rin=13�, the average value of the input cur-
rent is less than the firing threshold and the output spikes are
totally caused by the fluctuation of the input current. As a
result, the neurons fire spikes with high variability �see Fig.
3�c��. With fully synchronized input spike trains, since the
output spikes totally follow the input firings, the variability
of the output spike trains is the same as that of the input
spike trains. That is, the coefficient of variation Cv measures
the extent of the regularity of the input spikes. It can be seen
that, with Sin=1, both the value of Cv with Rin=5 and the
value of Cv with Rin=31 are larger than that with Rin=13
�see Fig. 3�c��. The relationship between the coefficient of
variation Cv and the input rate Rin with fully synchronized

input is summarized in the inset of Fig. 3�c�. The value of Cv
first decreases and then increases as the input firing rate Rin
increases, which arises from a widely investigated effect
termed “coherence resonance” �CR� �19,20�. It is believed
that CR is caused by different noise dependencies of the
activation and the excursion times �19�. For the occurrence
of CR, the mean input current I0 of the presynaptic neurons
is needed to be below the threshold �21�.

Figure 4 depicts the output rate Rout, the output synchrony
Sout, and the coefficient of variation Cv versus the input syn-
chrony Sin for different values of the coupling strengths g
with the input rate Rin=13. For fully synchronized input
�Sin=1�, every presynaptic synchronous packet can effec-
tively excite the postsynaptic neurons to fire spikes at the
same time exactly. Since the input rate Rin of each curve is
the same, all the output rate curves evolve to the same point
as the input synchrony Sin increases �see Fig. 4�a��. For g
=60, the output synchrony Sout increases sharply as the input
synchrony Sin increases from 0 to 0.1, which arises from the
synchrony amplification effect as discussed above. However,
with the coupling strength g decreasing, such a rapid transi-
tion gradually disappears �see Fig. 4�b��. The underlying rea-
son is that, for small coupling strength g, the average input
current is small. As a result, the membrane potentials of the
neurons cannot be depolarized to near the threshold by un-
correlated spikes and the postsynaptic spikes are mainly ex-
cited by presynaptic synchronous packets, which results in
that the neurons discharge spikes with large variability �see
Fig. 4�c��. Since the membrane potentials are required to
fluctuate near the threshold in the synchrony amplification
effect, there exists no a rapid transition in the output syn-
chrony curve.

We would like to stress the nontrivial mapping from
�Rin ,Sin� to �Rout ,Sout� at a relatively small projection
strength g, e.g., g=30. There is a critical value of Sin as
indicated by the intersection of the curve of Sout with the

FIG. 3. g=60. �a� The output rate Rout. �b� The output synchrony
Sout. �c� The coefficient of variation Cv plotted as a function of the
input synchrony Sin. Each symbol represents different input rate Rin:
5 ���, 13 ���, 22 ���, and 31 ���. The dotted line in �b� is the
diagonal Sin=Sout. Inset of �c� shows Cv versus Rin with Sin=1.

FIG. 4. Rin=13. �a� The output rate Rout. �b� The output syn-
chrony Sout. �c� The coefficient of variation Cv plotted as a function
of the input synchrony Sin. Each symbol represents different cou-
pling strength g: 24 ���, 30 ���, 45 ���, and 60 ���. The dotted
line in �b� is the diagonal Sin=Sout.
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dotted diagonal line in Fig. 4�b�. The synchrony in the output
is enlarged when Sin is larger than this value and is reduced
otherwise. However, the output rate Rout is significantly re-
duced in a broad range of Sin. As we will discuss later, when
the mapping between �Rin ,Sin� to �Rout ,Sout� is iterated in the
feedforward network, the synchrony can first increase but
will eventually decrease to zero due to a significantly re-
duced firing rate and the neurons in deep layers cannot be
activated.

Figure 5 shows how the input spike trains are transmitted
by the network as the coupling strength g increases. For the
four selected parameters of the input spike trains, every
curve shows a threshold-and-linear relationship between the
output rate Rout and the coupling strength g �see Fig. 5�a��.
For small coupling strength g, only these synchronous pack-
ets can effectively induce postsynaptic firings. Differently,
for large coupling strength g, the neurons discharge spikes
mainly by temporal integration. Therefore, with identical in-
put rate �Rin=22�, as the coupling strength g increases, the
output rate Rout with great input synchrony �Sin=0.372� is
first larger than that with less input synchrony �Sin=0.057�
and then vice versa �see Fig. 5�a��. With the coupling
strength g increasing, the output synchrony Sout increases
sharply and then saturates at a value, which is caused by the
synchrony amplification effect �see Fig. 5�b��. Since the
membrane potentials of the neurons are required to be depo-
larized to near the threshold in the synchrony amplification
effect, there still exists such an effect when the coupling
strength g is large. The saturated value of the output syn-
chrony Sout increases with the input synchrony Sin �compare
the two curves with the input rate Rin=22�. With the coupling
strength g increasing, the average value of the input current
increases. Therefore, the neurons fire spikes more regularly
and the coefficient of variation Cv decreases �see Fig. 5�c��.
For small input firing rate Rin, the mean value of the input

current increases slowly with the coupling strength g, which
results in that the output synchrony Sout increases slowly �see
Fig. 5�b��. With great synchrony Sin, the neurons fire spikes
still with large variability because the presynaptic neurons
discharge spikes quite irregularly and these input synchro-
nous packets can induce postsynaptic firings effectively �see
Fig. 5�c��. For large coupling strength g, since the fluctuation
amplitude of the input current decreases with the input rate
Rin, the value of Cv with large Rin is less than that with small
Rin �see Fig. 5�c��. These results again show clearly that the
mapping from �Rin ,Sin� to �Rout ,Sout� depends strongly on
the projection strength g.

The multilayer feedforward network has become a re-
search focus in the field of theoretical neuroscience recently
�8–11,22�. To investigate how spike trains are transmitted in
such a network, we construct a ten-layer feedforward net-
work with 2000 IF neurons in each layer. Each neuron ran-
domly receives synaptic inputs from about 5% of all the
neurons in the previous layer. There exist no connections
between the neurons in the same layer. Figure 6�a� shows
how the firing rate Ri and the synchrony Si of layer i evolve
in the process of neuronal activity transmission. Each curve
with different symbols represents different coupling strength
g, input rate R1, and input synchrony S1; the first point of
each curve is �S1 ,R1� of layer 1 and the second point is
�S2 ,R2� of layer 2, and so on. Following the direction of the
arrows, the layer index increases. In such an architecture
network, the output spike trains of layer 1 are injected to
layer 2 and then the output spike trains of layer 2 are pro-
jected to layer 3. Thus, transmission of spike trains in the
feedforward network can be roughly regarded as an iteration
process of the relationship between input and output spike
trains. For the four selected input parameters, the activity in
layer 10 is none �lines 1 and 2� or in full synchrony �lines 3
and 4�. From the mapping between two layers in Fig. 4�b�,
we can see that only two fixed points �S=0 and S=1� are

FIG. 5. �a� The output rate Rout. �b� The output synchrony Sout.
�c� The coefficient of variation Cv plotted as a function of the cou-
pling strength g. Each symbol represents different input parameters:
Rin=13, c=0.1, and Sin=0.043 ���; Rin=22, c=0.1, and Sin

=0.057 ���; Rin=31, c=0.1, and Sin=0.063 ���; and Rin=22, c
=0.6, and Sin=0.372 ���.

FIG. 6. �a� Each curve represents different parameters: Rin=31,
c=0, Sin=0, and g=45 ���; Rin=22, c=0.1, Sin=0.057, and g=45
���; Rin=13, c=0.3, Sin=0.134, and g=30 ���; and Rin=5, c=0.5,
Sin=0.199, and g=30 ���. The layer index increases along the
direction of the arrows. �b� The synchrony S10 versus the input
synchrony Sin with g=30. Each symbol represents different input
rate Rin: 5 ���, 13 ���, 22 ���, and 31 ���.

RATE-SYNCHRONY RELATIONSHIP BETWEEN INPUT AND… PHYSICAL REVIEW E 81, 011917 �2010�

011917-5



stable after many iterations, which is confirmed by simula-
tions with different input parameters �see Fig. 6�b��. It is
worth noting that synchrony can be gradually built up in
deep layers even if there is no correlation between input
spike trains �see curve 1 in Fig. 6�a��, which also appears in
networks of Hodgkin-Huxley neurons �10�. Full synchrony is
the default state of the deep layers in the feedforward net-
work when the input rate and projection strength g are large
enough. With independent noise injected to each layer, very
many layers are needed to achieve full synchrony and the
input signal can be stably transmitted �8�. On the other hand,
enhanced synchrony can be accompanied by significantly re-
duced firing rate in the first few layers and the activity cannot
propagate to deeper layers �the cases of 3 and 4 in Fig. 6�a��.
There are also situations where both R and S decrease mono-
tonically when the initial values are small enough �not shown
in the figure�.

IV. DISCUSSION AND CONCLUSION

To conclude, we have explored the 2D space �rate and
synchrony� mapping between input and output spike trains of
a neuronal network. As the input synchrony increases, the
neurons first work as temporal integrators and then gradually
as coincidence detectors. With enough large coupling
strength, even if there is a small correlation between input
spike trains, the output spike trains can exhibit great syn-
chrony, which is caused by the synchrony amplification ef-
fect. For small coupling strength, such an effect disappears
because the membrane potentials of the postsynaptic neurons
cannot be depolarized to near the firing threshold. With the

coupling strength increasing, the output synchrony increases
sharply and then saturates at a large value. The results reveal
nontrivial interplay between firing rate and synchrony, which
depend crucially on the projection strength. Transmission of
neuronal activity in the feedforward network can be approxi-
mately regarded as an iteration process of the input-output
relationship of one network. The activity in deep layers can
only be none or in full synchrony depending on the input
parameters due to the interplay between firing rate and syn-
chrony.

Since information is contained in spikes trains in the ner-
vous system, our results provide insights on how information
is transmitted by neuronal networks. However, there usually
exist couplings between neurons in the nervous system.
Whether two neurons are connected depends on the cell type,
the distance between neurons, the extent of common excita-
tory input �23�, and so on. It deserves a further study to
investigate what is the relationship between input and output
spike trains when the neurons are coupled with each other in
a biological way. Inhibitory neurons are not included in this
paper. What functional roles the inhibitory neurons play in
the transmission of spike trains is an ongoing work. Adapta-
tion has been observed in many sensory systems including
the visual system �24�, olfactory system �25�, etc. It is an
interesting topic to investigate the input-output relationship
of spike trains in a network where the neuronal activity can
be adapted to external stimulus.

ACKNOWLEDGMENTS

This work was supported by Hong Kong Baptist Univer-
sity and NNSFC Grant No. 10804013 �S.W.�.

�1� R. C. deCharms and A. Zador, Annu. Rev. Neurosci. 23, 613
�2000�; M. I. Rabinovich, P. Varona, A. I. Selverston, and H.
D. I. Abarbanel, Rev. Mod. Phys. 78, 1213 �2006�.

�2� J. de la Rocha, B. Doiron, E. Shea-Brown, K. Josic, and A.
Reyes, Nature �London� 448, 802 �2007�.

�3� E. Shea-Brown, K. Josic, J. de la Rocha, and B. Doiron, Phys.
Rev. Lett. 100, 108102 �2008�.

�4� S. Neuenschwander, M. Castelo-Branco, J. Baron, and W.
Singer, Philos. Trans. R. Soc. London, Ser. B 357, 1869
�2002�.

�5� M. N. Shadlen and J. A. Movshon, Neuron 24, 67 �1999�.
�6� X. Li and G. A. Ascoli, Neural Comput. 20, 1717 �2008�.
�7� M. Diesmann, M. Gewaltig, and A. Aertsen, Nature �London�

402, 529 �1999�; M. Gewaltig, M. Diesmann, and A. Aertsen,
Neural Networks 14, 657 �2001�; H. Cateau and T. Fukai, ibid.
14, 675 �2001�.

�8� M. C. W. V. Rossum, G. G. Turrigiano, and S. B. Nelson, J.
Neurosci. 22, 1956 �2002�.

�9� A. Reyes, Nat. Neurosci. 6, 593 �2003�; B. Doiron, J. Rinzel,
and A. Reyes, Phys. Rev. E 74, 030903 �2006�; H. Cateau and
A. D. Reyes, Phys. Rev. Lett. 96, 058101 �2006�; S. Goedeke
and M. Diesmann, New J. Phys. 10, 015007 �2008�.

�10� S. Wang, W. Wang, and F. Liu, Phys. Rev. Lett. 96, 018103
�2006�.

�11� S. Wang and W. Wang, Neuroreport 16, 807 �2005�.
�12� E. Zohary, M. N. Shadlen, and W. T. Newsome, Nature �Lon-

don� 370, 140 �1994�; J. Alonso, W. M. Usrey, and R. C. Reid,
ibid. 383, 815 �1996�; W. Bair, E. Zohary, and W. T. New-
some, J. Neurosci. 21, 1676 �2001�.

�13� P. N. Steinmetz et al., Nature �London� 404, 187 �2000�.
�14� M. Stopfer, S. Bhagavan, B. H. Smith, and G. Laurent, Nature

�London� 390, 70 �1997�.
�15� S. Wang, F. Liu, W. Wang, and Y. Yu, Phys. Rev. E 69, 011909

�2004�.
�16� A. Tonnelier and W. Gerstner, Phys. Rev. E 67, 021908

�2003�; A. Roxin, H. Riecke, and S. A. Solla, Phys. Rev. Lett.
92, 198101 �2004�; R. Moreno-Bote and N. Parga, ibid. 96,
028101 �2006�.

�17� X. Pei, L. Wilkens, and F. Moss, Phys. Rev. Lett. 77, 4679
�1996�; S. Wang, J. Xu, F. Liu, and W. Wang, Eur. Phys. J. B
39, 351 �2004�; S. Wang and C. Zhou, Phys. Rev. E 79,
061910 �2009�.

�18� P. Konig, A. K. Engel, and W. Singer, Trends Neurosci. 19,
130 �1996�.

�19� A. S. Pikovsky and J. Kurths, Phys. Rev. Lett. 78, 775 �1997�.
�20� A. Longtin, Phys. Rev. E 55, 868 �1997�; C. Zhou, J. Kurths,

and B. Hu, Phys. Rev. Lett. 87, 098101 �2001�.
�21� B. Lindner, L. Schimansky-Geier, and A. Longtin, Phys. Rev.

SENTAO WANG AND CHANGSONG ZHOU PHYSICAL REVIEW E 81, 011917 �2010�

011917-6



E 66, 031916 �2002�.
�22� V. Litvak, H. Sompolinsky, I. Segev, and M. Abeles, J. Neu-

rosci. 23, 3006 �2003�; J. Li, F. Liu, D. Xu, and W. Wang,
Europhys. Lett. 85, 38006 �2009�.

�23� Y. Yoshimura, J. L. M. Dantzker, and E. M. Callaway, Nature

�London� 433, 868 �2005�.
�24� D. Chander and E. J. Chichilnisky, J. Neurosci. 21, 9904

�2001�.
�25� A. R. Best and D. A. Wilson, J. Neurosci. 24, 652 �2004�.

RATE-SYNCHRONY RELATIONSHIP BETWEEN INPUT AND… PHYSICAL REVIEW E 81, 011917 �2010�

011917-7


